

OpenStack Juno Sahara(Hadoop-as-a-Service)の概要

日本ヒューレット・パッカード株式会社 テクノロジーコンサルティング事業統括本部 オープンソース部

自己紹介: 大矢俊夫(おおやとしお)

• 所属

- 日本ヒューレット・パッカード株式会社 テクノロジーコンサルティング事業統括本部 サービス統括本部 オープンソース部

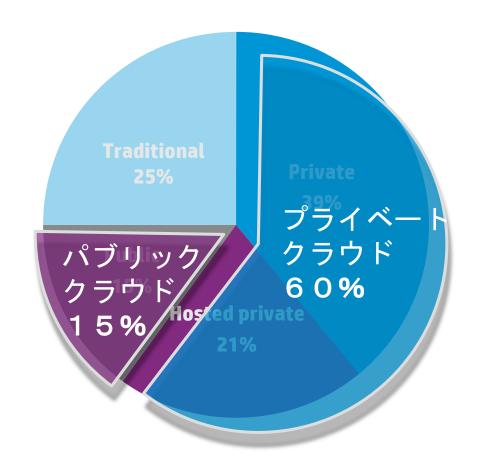
• 職務領域

- OSSおよびJava製品関連に全般に関する技術支援、コンサルティング
 - OpenStack、Hadoop、Java Application Server、OSS DB 等々

• 経歴

- HP-UX OEM向けサポート
- 非接触ICカード向けサーバミドルウェア設計・開発
- 2008年から現職

Agenda

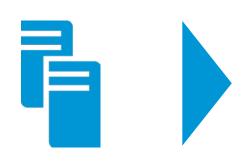

- OpenStack概要
- Hadoop-as-a-Serviceとは
- Sahara概要
- ・デモ
 - Pig を利用したビッグデータ処理
- 参考情報

OpenStack概要

企業ITはハイブリッドクラウドに向かう 2016年の企業IT配備モデル(予測) ¹

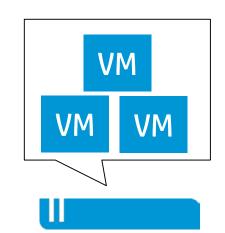
"..2017年末には、大 企業の半数はハイブ リッドクラウドを活 用しているだろう"-Gartner²

¹ Source: Coleman Parkes Research by HP, May 2013

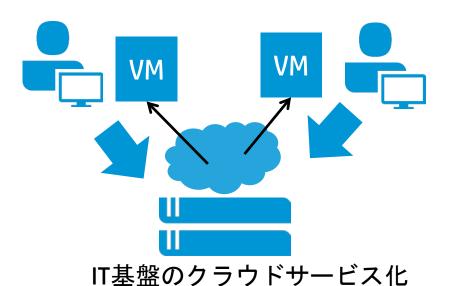

² "Gartner Press Release: "Gartner says Cloud Computing Will Become The Bulk of New IT Spend By 2016", Goa, India, October 24, 2013. http://www.gartner.com/newsroom/id/2613015

IT基盤が「クラウド化」へと進化する背景

「仮想化」への進化、「クラウド化」への進化


仮想化によるIT基盤統合

IT基盤のクラウドサービス化


サイロ型IT基盤

得られる効果

仮想化技術を活用した IT基盤統合と標準化

- リソース稼働率の向上
- 運用作業の標準化
- システムコストの最適化

- ITリソースを、サービスメニュー化 して迅速に提供
- セルフポータルの提供による管理業 務の自動化

「クラウド化」したIT基盤を構築できるソフトウェアのニーズが拡大

IT基盤の「クラウド化」とは

- ITリソースの「サービス化」+「標準化」+「自動化」
 - ✓ 実装手段として「仮想化」技術を利用することが多いが「仮想化」は必須ではない

サービス化

- 利用者はIT基盤の内部構造を意識しない
- ◆ 使いたいときに使いたい分を利用する

標準化

- 次のような条件を共通メニューとして揃える
 - ✓マシンリソース要件(OS、CPU、メモリ等)
 - ✓ 利用条件(SLA、セキュリティ等)
 - ✓ 申請方法、運用管理等のプロセス

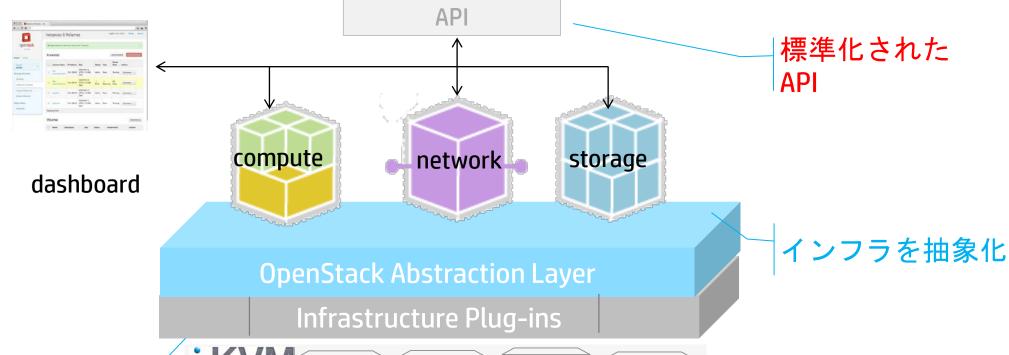
<u>自動化</u>

• 利用申請やリソース払い出しなどの管理タスクをポータルやAPIで自動化

IT基盤の利用者のメリット

要求に応じたスペックの仮想 サーバやストレージをすぐに 利用できる

IT基盤の管理者のメリット


- 利用者ごとの個別対応が不要
- 運用の効率化と管理の向上
- ヘルプデスクの負荷軽減
- 統合によるコスト削減効果

OpenStack概要

多様なインフラをサービス化する 特定ベンダの技術・仕様に縛られない="オープン・スタンダード"


ベンダと技術の 違いを吸収する プラグイン



異種混在インフラ

OpenStack開発の経緯とロードマップ

2008年 独自のクラウドファイルホス ティングサービスを開発・運 営

2010/7

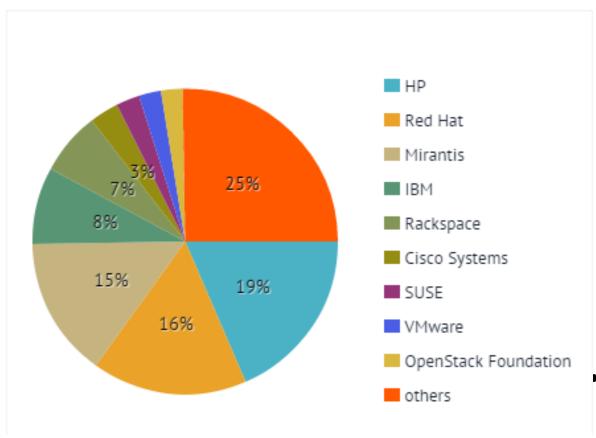
openstack™

Cloud Files(ファイルホスティング)

OpenStack参加メンバー企業

Platinum Members

Gold Members


http://www.openstack.org/foundation/companies/

Corporate Sponsors

HPのOpenStackへの貢献と経験

Contribution by companies

- HPメンバーが開発をリード(PTL)するプロジェクト
 - Horizon (Dashboard)
 - Neutron (Network)
 - Trove (DBaaS)
 - Ironic (Bare-Metal)
 - TripleO (Provisioning)
 - Designate (DNSaaS)
 - Infrastructure (CI Platform)
 - Quality Assurance (CI)
 - Olso (共通ライブラリ)
- 2011/9から3年以上 OpenStackベースのパブリック クラウドを運用してきた経験を活かす、還元する

http://stackalytics.com/

(2015/01/19)

オープンソース版OpenStack 機能一覧 (Juno)

正式機能

Phase	プロジェクト	機能
Integrated	Nova	サーバ管理
	Swift	オブジェクトストレージ
	Glance	システムイメージ管理
	Cinder	ブロックストレージ管理
	Keystone	統合認証
	Horizon	ダッシュボード
	Neutron	ネットワーク管理
	Ceilometer	メータリング/モニタリング
	Heat	オーケストレーション
	Trove	DB as a Service
	Sahara	Hadoopクラスタ管理

次のリリースで正式機能を目指す機能

Phase	プロジェクト	機能
Incubation	Ironic	ベアメタルサーバ管理
	Marconi	メッセージキュー
	Designate	DNS管理

新たに提案された機能(成熟を待ってIncubationへ)

Phase	プロジェクト	機能
External	Graffiti	メタデータ管理
	Barbican	キー管理
	Murano	サービスカタログ管理
	Staccato	データ転送

「オンプレミス型インフラ」と「クラウド型インフラ」

オンプレミス型(「ペット」型)

- ペットのように1台1台のサーバに名前をつける
- 24時間365日手厚く面倒を見る
- 調子が悪くなったらすぐ手当てをする

クラウド型(「家畜」型)

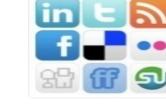
- 家畜のように名前ではなく、番号で扱う
- どのサーバも区別は付けない/付かない
- 調子が悪くなったら、別のサーバを起動

"CERN Data Center Evolution", Gavin McCance, 2012

Hadoop-as-a Serviceとは

ビッグデータの広がり デジタルデータ、非構造化データが指数関数的に増大

毎秒の Tweet 数 **97,000**


オーディオ

YouTube 上のビデオ数 **1億本以上**

twitter

ソーシャル メディア

ビデオ

イメージ

SharePoint ユーザー 1億人以上

> 30%の増加率

毎月 Facebook で共有 されるコンテンツ数 **300億**

テキスト

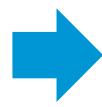
Email

ドキュメント

米国における 紙ドキュメント数**4兆** 増加率 22%

2010年携帯電話数 **50億台**

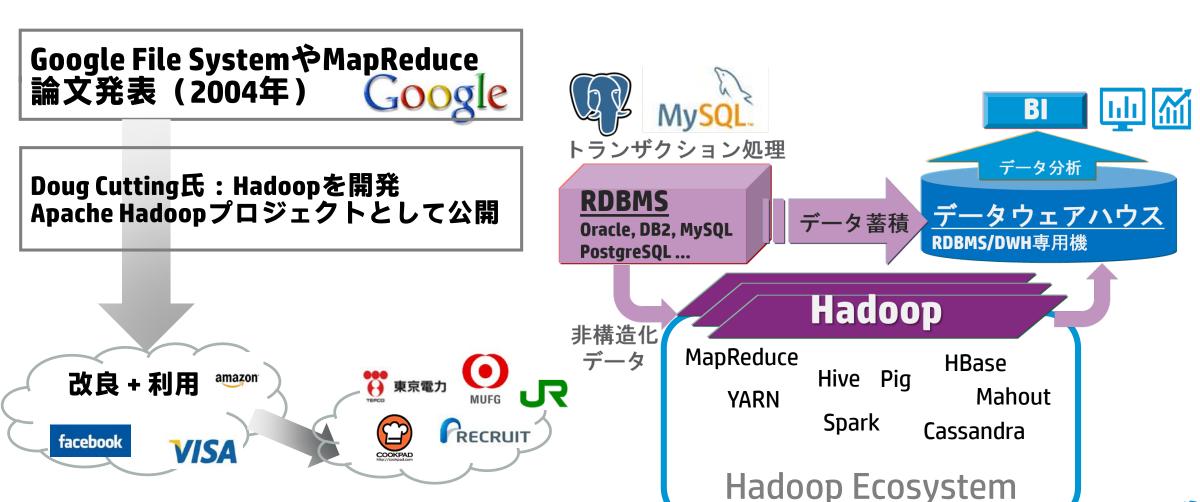
ー日のメール数 **2,940億通**



ビッグデータ処理に対するニーズ

背景

- -eコマース、広告業の競争激化
- クリック数、ページビュー急減
- センサーデータの活用


顧客と商品の相関関係、類似度を見たい ユーザーの行動パターン予測

- ・レコメンド
- ユーザー行動分析
- ログ分析
- Web Page Indexing

Hadoopとは

非構造化データに対する、大規模分散データ処理フレームワーク

Hadoopシステム構成

クライアント/データソース

Name Node / Job Tracker

役割:メタデータの保持、Data Nodeの状態管理、Job管理

構成: HAソフトウェアによる冗長化

Hadoop クラスタ

Map/Reduce:複数のサーバで分散処理することで高性能を実現

HDFS(Hadoop Distributed File System)
ファイルを分割して複数のサーバに

ファイルを分割して複数のサーバに複製して保持することで冗長性を担保

データの保持と分散処理を、スケールアウト構成で実現

Hadoop-as-a-Serviceとは

オンプレミスのHadoopクラスタ基盤の課題への1つの回答

オンプレミスのHadoopクラスタ基盤の課題

Hadoopクラスタ基盤の 構築/資産化

Hadoop専用のクラスタシステムが必要

有用な処理結果が得られるかは実行しなければならない

Hadoopクラスタ基盤の 運用

クラスタの運用管理の負荷が継続的に発生

クラスタのスケールアウト計画

クラウドリソースを 利用して構築

必要な時にクラウド上のリソースから Hadoopクラスタを素早く構築

データ処理結果を簡単に得られる

使用時にのみHadoop クラスタ基盤を運用

クラスタの運用管理は、ほぼ無くなる

必要に応じてクラウド上のリソースを追加

Sahara概要

Sahara概要

OpenStack上でHadoopを動かす!

Saharaは、OpenStackで構成したクラウド上で、ユーザがHadoopクラスタを簡単にデプロイし、 また管理可能にすることを目的として開発されたコンポーネントです。

主なユースケース:

- ●開発やQAのための、OpenStack上へのHadoopクラスタの素早いデプロイ
- ◆汎用目的のOpenStack laaSクラウドの未使用コンピュートパワーの活用
- ●アドホックな"Analytics as a Service"(分析サービス)や、突発的な分析ワークロード
 - ●Amazon Elastic MapReduce (EMR http://aws.amazon.com/jp/elasticmapreduce/)と同様なユースケース

利用上の利点

- 気軽にデータ処理を試すことができる
- 必要な時に必要なサイズのHadoopクラスタを用意し、利用することができる
- 利用しない場合はHadoopクラスタを削除し、リソースを他の用途に利用できる
- REST APIを利用した自動Hadoopクラスタ構築・ジョブ実行が可能

Sahara概要

Saharaでできること

① Hadoopクラスタ基盤構築

- Hadoopクラスタ管理
 - OpenStackクラウド上でのHadooクラスタ基盤の構築・削除・管理が可能
- Plug-inベース
 - 様々なディストリビューション(コミュニティ版、Hortonworks、Cloudera、MapR)を利用可能
- クラスタ・スケーリング
 - 構築したHadoopクラスタのサイズを簡単に 増減できる

② ジョブ実行 - Elastic Data Processing

- ジョブ実行
 - Saharaで構築したHadoopクラスタに対し、 ジョブを実行することが可能
- Swift、HDFS連携
 - 処理対象データをSwiftまたは外部のHDFSに 配置し、利用することが可能
 - また、処理結果を出力することも可能
- ジョブ管理
 - OpenStack Horizonからジョブ管理を行うこと が可能

① Hadoopクラスタ基盤構築

1. 利用するプラグインを選択

- 利用するディストリビューション、バージョンを選択

2. イメージレジストリの登録

- Glanceに登録したSahara用イメージとプラグインを紐付け てSaharaに登録

3. ノードグループテンプレート作成

- Hadoopのマスタノード、スレーブノード等、ノードの役 割毎のテンプレートをプラグインと紐付けて作成

4. クラスタテンプレート作成

- 1つ以上のノードグループテンプレートからクラスタのテ ンプレートを作成

	/	/	`	/	
プラグイン	Vainilla Plugin	HDP Plugin	Spark Plugin	Cloudera Plugin	
イメージ レジストリ	6	6	(e)	(e)	
ノード グループ テンプレート			h		
クラスター テンプレート					
ー Hadoop クラスタ		• 2	32		

クラスターテンプレートを利用して Hadoopクラスタをデプロイ!

ソフスツ

② ジョブ実行 – Elastic Data Processing

- 1. 入力データおよび処理プログラム配置
 - 外部のHDFSまたはSwift上に入力データを配置
 - 必要に応じ、処理プログラムも配置
- 2. データソース設定
 - 処理対象データへのアクセスURLをデータソースとして設定
 - 処理結果の格納場所も同様に設定
- 3. ジョブバイナリ登録
 - データ処理プログラム(スクリプトやJavaライブラリ等)を 設定
- 4. ジョブ設定
 - ジョブタイプ(Pig, Hive, MapReduce, Spark等)とジョブバイナリを指定し、ジョブを設定します。

入出力用のデータソースおよびジョブ を指定して、ジョブを実行!

HDFS

- 入力データ - 出力データ

Swift

- 入力データ
- 出力データ
- Job Binaries

Data Sources

- Job実行時に利用する入出力 データ格納場所を指定
- HDFS または Swiftを指定可能

Job Binaries

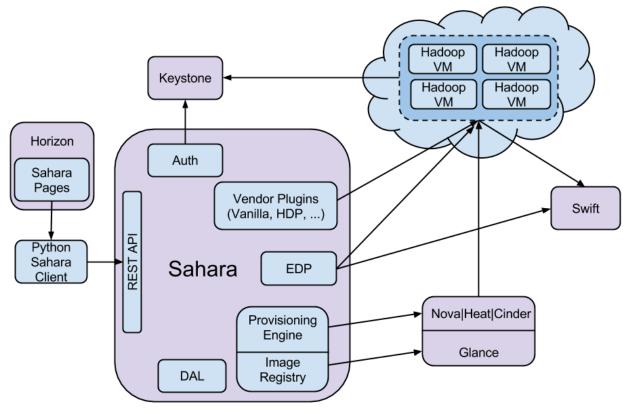
- Job Binaries格納場所
- 説明

Jobs

- ジョブタイプ
- 利用Job Binaries

Job Executions

- 利用クラスタの指定
- 利用Data Sourceの指定
- 利用Jobの指定
- 実行設定



Saharaのアーキテクチャ

コンポーネント	概要		
Sahara Pages	HorizonでのSahara UIを提供		
Sahara Client	CLI		
REST API	Saharaの機能を提供するAPI		
Auth	Keystoneと連携し、認証認可を行う		
Venders Plugins	プロビジョニングしたVM上の Hadoopの設定および起動に責任を 持つ		
EDP(Elastic Data Processing)	ジョブ実行のスケジューリングと 管理に責任を持つ		
Provisioning Engine / Image Registry	Nova, Heat, Cinder, Glanceと通信に責任を持つ		
DAL(Data Access Layer)	内部モデルをDB永続化する		

デモ

- Tips
 - DataSourceの指定
 - Swiftの場合
 - EDPを実行するローカルのOpenStackのSwift上のコンテナを利用することができる
 - 指定URL は以下のパターン
 - <コンテナ名>.sahara/<オブジェクト名>
 - 例) demo.sahara/input.tar
 - HDFSの場合
 - Httpfs を利用してアクセスする

Appendix Sahara参考情報

参考情報

- プロジェクトサイト
 - http://docs.openstack.org/developer/sahara/index.html
- Git
 - https://github.com/openstack/sahara
 - EDP実行サンプル
 - https://github.com/openstack/sahara/tree/master/etc/edp-examples
- Red Hat Enterprise Linux OpenStack Platfrom 5
 - OpenStack のデプロイメント: 実習環境 (手動設定) 第11章 OPENSTACK SAHARA のインストール
 - https://access.redhat.com/documentation/ja JP/Red_Hat_Enterprise_Linux_OpenStack_Platform/5/html/Installation_and_Configuration_Guide/chap-OpenStack_Sahara_Installation.html
- OpenStack Data Processing (Sahara) Juno Release Features Demo
 - http://youtu.be/zHYfLNJ7ncl
 - 上記で利用していたサンプル
 - https://github.com/openstack/sahara/tree/master/etc/edp-examples

Sahara用イメージ

- Vanilla Plugin用
 - http://docs.openstack.org/developer/sahara/userdoc/vanilla_plugin.html
 - Hadoop 1.2.1 および 2.4.1 が存在
- HDP Plugin用
 - http://docs.openstack.org/developer/sahara/userdoc/hdp_plugin.html
 - Hortonworks社のHadoopディストリビューション
- Spark Plugin用
 - http://docs.openstack.org/developer/sahara/userdoc/spark_plugin.html
 - CDH4 HDFS + Apache Sparck
- Cloudera Plugin用
 - http://docs.openstack.org/developer/sahara/userdoc/cdh_plugin.html
 - CDH 5.2ベース
 - Disk Image Builderでイメージを作成する必要がある

